The range of alloys were produced in the R.R.50 range.These could be worked by casting or forging, but they were not intended for rolling as sheet or general machining from bar stock.
R.R. 50 General-purpose sand casting alloy
R.R. 53 Die-cast piston alloy Additional silicon content, to improve flow when machine casting
R.R. 56 General-purpose forging alloy
R.R. 58 Low-creep forging alloy for rotating impellers and compressors[18]
R.R. 59 Forged piston alloy
The number of alloys expanded to support a range of applications and processing techniques. At the Paris Airshow of 1953, High Duty Alloys showed no less than eight different Hiduminium R.R. alloys: 20, 50, 56, 58, 66, 77, 80, 90.[19] Also shown were gas turbine compressor and turbine blades in Hiduminium, and a range of their products in the Magnuminium alloy series.
R.R.58, also Aluminium 2618, comprising 2.5 copper, 1.5 magnesium, 1.0 iron, 1.2 nickel, 0.2 silicon, 0.1 titanium and the remainder aluminium, and originally intended for jet engine compressor blades, was used as the main structural material for the Concorde airframe, supplied by High Duty Alloys, it was also known as AU2GN to the French side of the project
Later alloys, such as R.R.66, were used for sheet, where high strength was needed in an alloy capable of being worked by deep drawing. This became increasingly important with the faster jet aircraft post-war, as issues such as transonic compressibility became important. It was now necessary for an aircraft's covering material to be strong, not merely the spar or framing beneath.
R.R.350, a sand-castable high temperature alloy, was used in the General Electric YJ93 jet engine and was also used in the General Electric GE4 intended for the later cancelled American Boeing 2707 SST project
Bookmarks